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ABSTRACT 

Historical woodwind instruments in museums or 
private collections often cannot be played, by virtue of 
their poor condition or the risk of damage. Acoustic 
impedance measurements may usually be performed on 
instruments in good condition, but only if they are in 
playable condition. Many museum specimens are 
not.  However, If the bore shape and tone holes are 
measured accurately, we are able to compute the acoustic 
impedance of the instrument for all fingerings. 
Conclusions may then be drawn about the instrument’s 
pitch, intonation, temperament, fingerings, effects of bore 
shrinkage and even the timbre of the notes. A simple 
linear, plane- and spherical-wave computational model, 
originally developed for calculating the acoustic 
impedance of conical-bore woodwinds, is here applied to 
bass clarinets for the first time. The results are assessed by 
experimental impedance measurements and by playing 
tests on an historical Heckel bass clarinet in A of 1910 that 
has been continuously maintained in playing condition but 
relatively lightly used. In all cases the lowest two to five 
frequency impedance peaks agreed well with the 
calculations. The method is shown to be a viable method 
for the examination of historical woodwind instruments. 
1. INTRODUCTION 
The aim of the investigations in this paper is to test the idea 
that it is possible to model the input impedance of a 
woodwind instrument sufficiently accurately that one may 
draw reliable conclusions about its behaviour purely from 
geometrical measurements of its bore, tone holes and 
keypads.  This will enable the vast collections of 
woodwind instruments in museums to be used for primary 
evidence of their sounds without risk of damage.  

There is a very large number of musical instruments in 
museum collections. However, many institutions preclude 
playing the instruments because of the risk of damage [1]. 
This is especially true for woodwind instruments where the 
act of playing rapidly introduces air at a much higher 
humidity and temperature, triggering potentially damaging 
reactions in the wood. Moreover, even if playing is 
permitted, it is fairly unlikely that a wind instrument 150 – 
200 years old will be usefully playable without restoration 
that goes well beyond normal conservation.  

However, museums will normally permit the handling 
and careful measurement of instruments that are not too 
fragile, to an accredited researcher under supervision and 
the guidleines of ICOM/CIMCIM [2]. This has been used 
to study the development of types of musical instrument 
and their keywork (see, for example, [3, 4, 5] for clarinets), 

but their sounds have so far been mostly inaccessible, apart 
from the small number of restored instruments. 

The principle upon which the main methodology of 
this paper is based is that the sound of a wind instrument 
is largely dominated by the shape of its air column, as 
indicated by its resonance or ‘input impedance’ spectrum 
[6, 7]. This is not to say that the mouthpiece/reed is 
unimportant, but that, at least up to the middle of the 
clarion register, it has a much smaller effect on the 
intonation of each note than does the air column [8, 9].  

A well-preserved instrument from 1910 was used for 
this trial. Standard acoustic computational methods were 
used to calculate the impedance spectra for each note of 
the instrument, and two tests of the accuracy were 
performed: one by measuring the input impedance directly 
in the laboratory, and the other by playing tests on the 
instrument, measuring the frequency of the note emitted at 
each fingering and looking at the predicted intonations 
produced by both ‘normal’ and ‘alternative’ fingerings.  

2. COMPUTER MODELLING OF WOOD-
WIND INSTRUMENTS 

The development of methods of modelling woodwind 
instruments has taken place over more than a century, 
beginning with the analytical ideas of Hemholtz [10]. 
Major contributions were made by Bouasse [11] and 
especially by Benade and his collaborators [7]. The 
understanding of woodwind acoustics progressed through 
analytical expressions for lossless and then lossy systems 
[12, 13, 14], linear system calculations [15], analysis of the 
reed/mouthpiece system [e.g. 10, 16, 17, 18], impedance 
of the bell [19, 20] and non-linear treatment of the reed 
generator [21, 22]; an excellent recent treatment appears in 
Chaigne and Kergomard [23]. In 1979, Plitnick and Strong 
[24] first applied the computer modelling method to the 
whole instrument. They split the bore (of an oboe in this 
case) into short cylindrical segments approximating the 
conical shape of the bore (the staircase approximation), 
started from the calculated impedance of the bell radiating 
into open air and summed each complex impedance, in 
series for the segments and in parallel for the tone holes. A 
reed cavity impedance was added in parallel at the end of 
the sum. The result was the spectrum of impedance peaks 
as a function of frequency over the audible band. Note that 
this and most other approaches are based on linear acoustic 
theory and strictly only apply to small amplitudes. This 
suffices for the calculation of resonance peaks, but the 
effects of large amplitudes are critical in the understanding 
of the peaks actually selected, as discussed below.  

This is essentially the method used today. Differences 
are in the expressions for tone hole impedances, for wall 
losses and the radiation impedance of the bell, and in the 
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matrix formulation analogous to transmission line theory 
which significantly speeds up the calculation [25]. 
Nederveen [26] has added some valuable insight into the 
elements of the modelling equations. Research on 
simulating clarinet sound dynamically using digital 
formulations of the air column and reed/mouthpiece 
system are also reaching an interesting stage [27, 28].  

The program used here was written in MatLab™ and 
depends largely on the equations given by Keefe [25]. This 
contains the main advances made in theoretical modelling 
since Plitnik and Strong, though we added the treatment of 
reed and embouchure impedance from Dalmont et al. [29]. 
We were able to use the program IMPEDPS written by 
Robert Cronin [30, 31] to test our program, since its source 
code was kindly provided to us and we could configure our 
program to use identical algorithms. The methodology is 
generally applicable to reed-driven instruments, which all 
share a similar non-linear generation and feedback 
mechanism at the reed, while the cylindrical sections of 
clarinets are simply cones of infinite length. We have 
tested the basic assertion by comparing calculated 
impedances to experimental measurements of impedance 
and to audio playing tests as described below. 

Many of the investigations involving the concept of  
acoustic impedance so far have been to test the acoustic 
theory and modelling [32, 33, 34] and to control 
manufacture [35, 36, 37, 38, 39, 40, 41] rather than to learn 
about the musical behaviour of historical instruments. The 
main exception is the work on bassoons by Cronin and 
Keefe [30, 25], Dart [42]  and Hichwa and Rachor [43], in 
which the viability of alternate fingerings, the intonation 
and temperament, the quality of alternate wing-joint and 
boot-joint designs were examined. Jeltsch, Gibiat and 
Forest were able to perform acoustic impedance 
measurements on a set of four six-key clarinets made by 
Joseph Baumann (fl. Paris, c. 1790 – c. 1830) [44]. The set 
was in very good condition, so they could compare 
impedance measurements with playing frequencies, and 
also make comparisons with a modern (Noblet) clarinet. 
Jean-Xavier Lefévre refers to this maker’s clarinets in his 
famous tutor [45] and gives particular fingerings to exploit 
or overcome their characteristics. In their data analysis 
they concentrated on the harmonicity relations produced 
by the fingerings of the clarinets. They showed, for 
example, that the first register was not well tuned. Lefévre 
remarked on this feature in his tutor and also composed his 
sonatas mainly in the second register of the instrument. 
The modern clarinet showed much better alignment of the 
harmonics. Jeltsch and Shackleton have performed a 
similar study on early nineteenth century clarinets by 
Alexis Bernard et Jacques Francois Simiot [46]. Bass 
clarinets do not appear to have been studied so far. 

The impedance spectrum shows the resonances in the 
tube that are capable of sustaining an oscillation in 
combination with the reed/mouthpiece generator. They 
will only make a good musical instrument if the harmonics 
of an oscillation based on one resonance coincide with 
other resonances, thus forming a ‘regime of oscillation’, 
when the non-linear generator combines with two or more 
resonances to form a stable tone [21, 21, 22].   

3. COMPUTATIONAL METHODOLOGY 

The program is an implementation of the well-established 
linear, small-signal plane- and spherical-wave acoustic 
impedance modelling equations. We shall cite sources for 
the key parameters and the necessary equations: the 
radiation impedance of a bell, the impedance of a conic 
segment, the impedances of tone holes and the impedance 
of the reed/embouchure. 

3.1. Input parameters and equations 
The following parameters were used: speed of sound, 
=347 m s-1; density of air =1.19 kg.m-3; viscosity of air 
=1.85 10-05 Pa s ; specific heat ratio Cp/Cv = 1.4; thermal 
conductivity of air =2.63 10-02 Wm-1K-1; specific heat at 
constant pressure Cp = 1.006 J kg-1K-1 These were chosen 
for appropriate playing conditions, that is, a somewhat 
elevated temperature and humidity and a substantially 
elevated CO2 content of the exhaled air [26]. The 
laboratory measurements were made under normal 
laboratory conditions, approximately 20°C and normal 
atmospheric composition. Coincidentally but conven-
iently, the product of air density and speed of sound (which 
determines resonant frequencies) for these two conditions 
agree to better than 0.2 cents, below the limits of intonation 
discrimination by human ears. 

The computation starts from the radiation impedance 
of the bell, and works up in segments to the mouthpiece. 
The bell formula was taken from experimental data from 
Benade and Murday [47], who give explicit formulae for 
the equivalent-length end correction due to the radiating 
aperture, dependent on the geometry of the aperture. This 
is converted into impedance by the standard formula for a 
lossless cylinder (e.g. [25]), since there are no walls to 
cause losses. As noted by Chaigne and Kergomard [2323, 
p. 684], there are no known formulas for the radiation 
impedance of a cone or flared bell, hence at present the 
semi-empirical formulas must suffice; however the choice 
does not strongly influence the end result. 

The impedance of a conic section, in terms of the exit 
impedance of the previous section, is given in Keefe’s 
1990 paper on the modelling of woodwind air columns 
[2525]. This is a spherical wave solution, and includes 
viscous and thermal losses at a smooth wall. Segments end 
either at a tone hole, or at an output diameter within 10% 
of the input diameter, so that the wall losses (which depend 
on diameter) are calculated reasonably accurately.   

Keefe’s paper was also used for the tone hole 
corrections, with series and shunt length corrections to the 
segment impedance as given in his equations 5-9. Separate 
equations are needed for closed tone holes, open tone holes 
and open keyholes with a pad at a certain distance above 
the hole. These depend on both Keefe’s theoretical models 
and on experiments by Benade and Murday [47] and by 
Cronin and Keefe [unpublished].  

The reed impedance should be accounted for [48, 26]. 
In the initial calculations the column was terminated with 
an infinite impedance in order to compare closely with the 
experimental measurements (see below). To model the 
actual playing frequency, we should need the impedance 
as seen from the mouthpiece looking at the reed; the 
imaginary part of the “embouchure impedance” should be 
equal and opposite to that of the appropriate resonance 
peak to ensure no phase shift around the feedback loop to 
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the reed; It therefore includes contributions from the reed, 
mouth and oral cavities. Thus the frequencies selected by 
the instrument will be slightly below impedance peaks of 
the tube alone. We have used the model of Dalmont et al 
[29], who show that the mouthpiece/reed combination can 
be taken into account by adding a small equivalent-length 
segment on to the top of the mouthpiece segment of the 
model. For soprano clarinets they found 7 ±2 mm for this 
correction and by considering the scaling of the equation 
we would expect 14 ±4 mm for bass clarinets.  

4. MATERIALS AND METHODS 
4.1. Description of the instrument and measurements 
The instrument used for the tests was a Heckel bass 
clarinet in A from 1910 shown in Figure 1, owned by the 
author. It is a 21-key system including 5 plateau keys, and 
is German system with a so-called patent C#. Dated at 
1910 from Heckel records [49] and formerly owned by the 
Kiev Symphony Orchestra, this has been kept in playing 
condition all its life, but lightly played (there are relatively 
few orchestral parts for the bass clarinet in A [50]. It is 
therefore a good experimental instrument for this project. 

 
Figure 1. The Heckel bass clarinet in A used for the trials.  

Bore diameters were measured with a set of graduated 
circular discs on the end of aluminium tubes. The bore is 
23.2 mm for all its length, with a largely-conical flare 
beginning 153 mm from the bell. The mouthpiece was 
made by E. Pillinger to the dimensions of an original 
Heckel Bb bass clarinet mouthpiece in Nuremberg 
(D.N.gnm.MIR480), published by Bär [51]. 

Tone hole positions were measured with a calibrated 
tape measure to ±0.25 mm; tone hole diameters and depths 
and bore disc diameters were measured with a polymer 
caliper with accuracy ±0.1 mm. In addition to the tone hole 
centres and diameters, the chimney depth, diameter of the 
body at the tone hole position, the diameter of the tone hole 
keypad (where fitted) and its opening height were 
measured. The radius of curvature of the outer tone hole 
edges was estimated at 1.0 mm. These parameters all enter 
into the expression for the tone hole impedance when 
opened.  Approximately 300 measurements in all were 
used to describe the instrument. We estimate that the 
parameters affecting the tuning (tone hole positions) are 
measured to 0.5%, corresponding to an average tuning 
accuracy of better than 5 cents. Since each length 
measurement is independent, this error applies separately 
to each note, and is not cumulative. The mouthpiece and 
crook were measured by filling with water and weighing 
the water, taking the average of ten measurements.  

4.2. Experimental impedance measurement systems 
Two systems were used to measure impedances in the 
laboratory: an Open University built-in-house single-
microphone capillary system that has been extensively 

calibrated [52] (courtesy Prof. D. Sharp), and the 
commercial BIAS (Brass Instrument Analysis System) 
modified for woodwind [53, 54, 55]. One measurement 
(note G3) was made with the in-house system, which 
verified that the agreement between the methods was 
good.  For all subsequent meas-urements the BIAS system 
was used. Both the BIAS and single-microphone 
measurement systems are capillary-based. That is, a 
capillary channel connects a controlled sound source to the 
entrance of the wind instrument to be measured. The 
capillary is designed to have an impedance that is 
frequency independent, and has a much larger magnitude 
than that of the air column being measured.The general 
principle draws from recording two characteristic signals 
at each end of the capillary, which allows one to obtain a 
good estimation of both the pressure and volume flow rate 
at the entrance of the measured instrument (one of which 
may be made constant using some active control). 
Provided the wavelength is sufficiently above that of the 
instrument’s bore, the ratio of pressure over flow rate gives 
the plane wave component of the impedance. Phase 
information can also be obtained from the system through 
the use of a phase meter connected to the two microphones. 

An adaptor was made from nylon to fit the BIAS 
system at one end and the mouthpiece socket of the bass 
clarinet at the other. The volume of the adaptor was made 
to be the same as that of the instrument mouthpiece at 28 
cm3, and the end fitted closely to the BIAS system.  

4.3. Audio frequency measurements 
In order to compare the measured and calculated 
impedances with the pitches actually produced, the 
instrument was played, and the sounds recorded over full 
chromatic scales. Each note was played for several 
seconds, without looking at a tuner and while attempting 
to play in the natural ‘centre’ of each note. The frequency 
was estimated by chopping the transients at the beginnings 
and ends of each note, and using the YIN algorithm to 
determine the frequency [56]. The accuracy of this method 
is estimated by its authors to be approximately ±1 cent. 

5. RESULTS 
5.1. Comparison of calculations and acoustic 

measurements 
Waves with frequencies beyond the tone-hole cut-off limit 
are not reflected at the first open tone hole but transmit 
through to and out of the bell (which is usually designed to 
have a similar cut-off frequency). Such waves do not 
contribute to the standing waves in the instrument nor to 
the feedback that stabilises the oscillations of the reed, 
though they can contribute weakly to the sound spectrum. 
The tone-hole cut-off frequency for this instrument is 
about 1000 Hz, calculated from Benade’s approximate 
formula [7] for an open tone-hole lattice 

!" = 0.11' (
)

1
*+

,/.
 

where !"	is the cut-off frequency, ' the speed of sound, ) 
the pipe radius, ( the hole radius, * the hole spacing and + 
the acoustic length of the holes. The result is confirmed by 
visual inspection of the impedance spectra. It is worth 
noting this value, since for bass clarinets, and also by 
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scaling from soprano clarinets, one would normally expect 
a cut-off around 750 Hz [77]. This is a significant 
parameter to evaluate in the study of historical 
instruments, since it affects the musical sound and playing 
qualities. This is discussed by Benade [77], who notes that 
woodwind instruments have actually ‘evolved’ over the 
centuries so that their cut-off frequencies became 
approximately constant over the whole range of the 
instrument. We thus chose the frequency range 20 – 2000 
Hz for both the measurement and calculations. The range 
on the instrument for analysis was chosen to be from 
written E2 to D5 (69.3 to 494 Hz fundamental peaks), 
corresponding to C#2 to B4 concert pitches). Whilst 
information could be obtained from higher note fingerings, 
it is less significant. Only one harmonic is available for 
generating pitches above about G4, and this can be varied 
widely by embouchure control in the altissimo regime. In 
this regime the pitch of the sound produced is more reliant 
on the skill of the player than on the instrument.  
We first show a few notes from (written) E2 to C5 (in SPN) 
with experimental and calculated impedances 
superimposed (

 

Figure 2). The experimental absolute values of the 
impedance peak amplitudes agree well in frequency but 
are up to 2× lower in amplitude. This is consistent with the 
results of Plitnik and Strong [24], indicating that some 
losses in the tube, such as fingers, pads, edges, or porosity 
are not taken into account. 

  

 

  

 

 

Figure 2. Four comparisons of experimental and computed 
results, from low written E2 up to C5.  

The measured and calculated lines largely overlap for 
each note, but the measured amplitudes are significantly 
lower and the frequencies very slightly lower.  Note that 
for C4 and above, the second impedance peak becomes the 
basis of the sound, through use of the speaker key, which 
depresses and shifts the first resonance out of a harmonic 
relationship with subsequent resonances.  

The overall picture is shown by Figure 3, which shows 
the departures from equal temperament for the calculated 
and measured impedance values and for the frequencies 
shown by the playing tests. As expected, the playing 
frequencies are slightly below the impedance peak values. 
It is seen that the instrument is playing somewhat sharp, 
relative to equal temperament at A4=440 Hz, and becomes 
sharper at higher notes. 

  
Figure 3. Graphs of calculated impedance peaks, measured 
impedance peaks and measured audio pitches for notes 
from E2 to D5. The ‘break’ in the instrument ranges 
between written Bb3 and B3 occurs at about 200 Hz and 
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that between C5 and C#5 at about 450 Hz. Up to the first 
break the first resonance frequency is plotted, between the 
first and second break the second resonance and above the 
third break, the third resonance peak. 

It is useful to express the frequency differences in 
cents. This gives a deviation from a target pitch by an 
amount that is comparable over the whole range. Figure 4 
shows the measured and calculated impedance peaks, and 
the measured audio pitches, relative to equal temperament.  

 
Figure 4: Deviation in cents for each note. The horizontal 
line at y=0 represents equal temperament at A4=440 Hz.  

Whilst there is scatter, the variations in each function 
appear to track one another. Figure 5 therefore shows the 
differences between calculated and measured impedance 
peaks. The calculated peaks average 10 ±8 cents higher 
than measured peaks. Figure 6b shows the difference 
between the measured impedance peaks and the playing 
frequencies. These average at 37 ± 8 cents.  

 
 

Figure 5 (left): differences between calculated and 
measured impedance peaks.  

Figure 6 (right): differences between measured impedance 
peaks and audio playing frequencies at mf levels. 

Since the impedance peak differences between 
calculation and experiment are reasonably consistent, they 
appear to be systematic and might be reduced by further 
development of the computation, for example to take 
account of other losses such as wall porosity. However, an 
agreement within 10 cents, which may be corrected 
empirically as shown below, is sufficiently accurate for the 
research into historical instruments.  

The difference of approximately 37 cents between the 
measured (or corrected calculated) peaks and the playing 
frequencies is ascribed to the embouchure correction 
discussed above. The results are similar to those of 
Dalmont et al. [29] though there is more scatter, possibly 

because the latter used a blowing machine not a player. We 
therefore recalculated the impedances with a number of 
embouchure equivalent lengths added to the top of the 
column, just before the terminating impedance, simply by 
extending the length of the segment representing the 
mouthpiece volume. Our best estimate is that the 
equivalent length required for compensation of the small 
differences between calculated and experimental 
impedances is 3 ±1 mm and that the equivalent length of 
the embouchure correction should be 17 ±4 mm. The latter 
is consistent with the results of Dalmont et al. [29]. These 
are simply added onto the mouthpiece segment. We do not 
know how closely the copy of the Bb mouthpiece is to the 
original supplied with the A clarinet. However, its volume 
was accurately measured, so the results should be 
consistent between calculation and playing.  Figure 7 
shows the differences between the calculated impedance 
peaks and the audio frequencies for two cases, first with 
the mouthpiece pushed fully in and then with it pulled out 
by 10.8 mm. It is seen that the same correction gives 
consistent results in the two cases.  

5.2. Investigation of alternative fingerings 
Most of the application of modelling to understanding 

historical instruments will be comparative, for example, 
how in tune are the alternative fingerings? We tested this 
by calculating and playing several notes that have, or may 
have, alternative fingerings: (written) Bb2, Eb3, F3, C#4 
and C5. These are referred to as ‘normal’ or ‘fork’ and are 
shown in Table 1. Only the calculated results are shown. 

 

 
Figure 7.  Comparison between calculated impedance 
peaks and audio playing frequencies when the overall end 
correction was 20 mm. (a) with mouthpiece pushed in, (b) 
with mouthpiece pulled out. 

 
Note Normal Fork 
Bb2   
E!b3 

  
F3   

C#4 
  

C5   
Table 1. Alternative fingerings investigated. [57]. 
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Figure 8. Calculated impedance spectra for two fingerings 
for the note Bb2.  

 
Figure 9. (right). Calculated impedance spectra for two 
fingerings for the note F3.  

 

Figure 10. Calculated impedance spectra for two 
fingerings for the note C#4.  

 

Figure 11. Calculated impedance spectra for two 
fingerings for the note C5. 

 
Figure 12. Calculated impedance spectra for two 
fingerings for the note Eb3.  

The calculated impedance spectra for the notes are 
shown in Figure 8 Figure 12. In all except Figure 12 the 
fundamental and at least one other resonance aligns well 
between the two fingerings and these also align with 
fundamental and third harmonic of the designed note (not 
shown). For some notes, especially the “patent” C#4, the 
resonances are a good fit for the 5th and 7th harmonics also. 
The observation on playing was that a two-resonance 
match was sufficient to produce good intonation match of 
the fingerings, but that the timbre of the tone was better 
matched if more resonances were aligned. 

However, the forked D#/Eb3 (Figure 12) showed no 
such match, and played almost a semitone sharp, just as 
predicted from the impedance curves. Whilst the fork 
fingering is often acceptable for this note on earlier 
German system clarinets it is clearly not the case here, and 
is in fact generally not the case for Albert system clarinets. 

6. CONCLUSIONS AND FUTURE WORK 
We recall that the model used is based on small-signal, 
linear, plane- and spherical-wave acoustics, with viscous 
and thermal wall losses. It does not take account of some 
loss mechanisms such as wall porosity, internal tone-hole 
edge turbulence and finger and pad absorption. 
Nevertheless, it is remarkably accurate for the absolute 
values of resonance frequencies and the relative heights of 
resonance peaks. We conclude that the method is certainly 
accurate enough for the purpose of reconstructing the 
acoustic impedance (resonance) spectra of instruments of 
bass clarinets. This extends the conclusion of Dalmont et 
al. [Error! Bookmark not defined.] from soprano 
clarinets, oboes and alto saxophones to bass clarinets, and 
provides a measurement of the embouchure equivalent 
length in the instrument studied. 

We believe that we achieve tuning accuracy at worst 
within a few cents, which is entirely adequate to measure 
the pitch and temperament at which an instrument was 
designed to play. The relative accuracy within or between 
instruments would be much better, so we may, for 
example, compare the tuning of alternative fingerings for 
notes, determine the temperament in which the instrument 
was constructed or compare the overall acoustic behaviour 
of two different instruments. This will be performed for a 
number of bassoon-form bass clarinets as part of a 
historical and acoustic study. 

The implementation in MatLab™ gives the ability to 
calculate a complete instrument (50 notes including 
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alternatives) and to analyse its resonances in about one 
minute (on a MacBook Pro with 3 GHz Intel Core i7), and 
also gives the facility to introduce different models. For 
example, it was straightforward to introduce an 
embouchure equivalent length. The mouthpiece, reed and 
oral cavity impedances have received much theoretical and 
some experimental attention since IMPEDPS was written 
in 1994-6: for example in the second edition of Nederveen 
[26], Fletcher and Rossing [58] and notably Chaigne and 
Kegomard [23]. Some improvement could therefore 
eventually be made in the model by implementation of 
new results.  

As pointed out by many others [77, 26, Error! 
Bookmark not defined., 25, 42, 32] the knowledge of 
resonance peaks has utility in instrument design, 
restoration and modification. The effect of drilling or 
moving a hole, or of reaming the bore (for example, for 
removing the tenon compression induced by tenon lapping 
before cork came into use [59]) can be checked before 
material is removed. Playing problems with a particular 
instrument may also be diagnosed. Thus, it is clear that this 
Heckel instrument would play more in tune with a longer 
neck, or at a higher orchestra pitch. Examination of the 
neck does indicate that it might be a later replacement and 
not an original. The calculated impedances could also 

indicate how to alter a tone hole to improve the tuning, and 
what effect this would have on other notes. We believe, 
therefore, that we have quantitatively validated the 
computational method of acoustic impedance as a research 
tool for investigating and restoring both modern and 
historical bass clarinets and other woodwind instruments. 
A fuller and more detailed publication of these results is in 
preparation [60]. 
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