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a b s t r a c t

Historical woodwind instruments in museums 

 

 

 

 

 

 

 

 or private collections often cannot be played, by virtue of
their poor condition or the risk of damage. 

 

 

 

 

 

 

 

 Acoustic impedance measurements 

 

 

 

 

 

 

 

 may usually be performed
on instruments in good condition without risk of damage, but only if they are in playable condition: com-
plete, with functioning mechanism, well-sealing pads and no open cracks. Many museum specimens are
not in this 

 

 

 

 

 

 

 

 condition. However, their geometry may almost always be 

 

 

 

 

 

 

 

 accurately measured, and 

 

 

 

 

 

 

 

 the mea-
surements used to calculate the acoustic impedance as a function of frequency via a computer model of
the body of the instrument. Conclusions may then be drawn about the instrument’s pitch, intonation,
temperament, fingerings, effects of bore shrinkage and even the timbre of the notes. A simple linear,
plane- and spherical-wave computational 

 

 

 

 

 

 

 

 model, originally developed for calculating the acoustic impe-
dance of conical-bore woodwinds, is here applied to 

 

 

 

 

 

 

 

 bass clarinets 

 

 

 

 

 

 

 

 for the first time. The results are
assessed by experimental impedance measurements and by playing 

 

 

 

 

 

 

 

 tests on an historical Heckel bass
clarinet in A of 1910 that has been continuously maintained in playing condition but has been relatively
lightly used. The degree of agreement between the acoustic measure ments and the calculations, the
required measurement accuracy 

 

 

 

 

 

 

 

 and the potential and limitations of 

 

 

 

 

 

 

 

 the method are discussed, and speci-
fic conclusion s for this instrument are drawn. Measurement of the frequencies produced in playing tests
allowed us quantitatively to estimate the effects of mouthpiece and reed on the pitch of the produced
notes. The method is shown 

 

 

 

 

 

 

 

 to be a viable method for the examination of historical woodwind
instruments.
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1. Introduction

The aim of 

 

 

 

 

 

 

 

 the investigations 

 

 

 

 

 

 

 

 in this paper is to test the idea that
it 

 

 

 

 

 

 

 

 is possible to model the input impedance of a woodwind instru-
ment sufficiently accurately that one may 

 

 

 

 

 

 

 

 draw reliable conclu-
sions about its behaviour purely from geometrical measurements
of its bore, tone holes and keypads. This will enable the vast collec-
tions of woodwind instruments in museums to 

 

 

 

 

 

 

 

 be used for primary
evidence of their sounds without risk of damage.

There is a very large number of musical instruments in museum
collections 

 

 

 

 

 

 

 

 in the UK alone. 

 

 

 

 

 

 

 

 These are steadily being catalogued in
the MiniM database, which contains 20,000 records so far .[1]
Clearly, a very important property of a musical instrument is its
sound and related questions such as its pitch, temperament and
fingering. However, the overall responsibility of museums is to
protect and promote the tangible and intangible natural and cul-
tural heritage , and 

 

 

 

 

 

 

 

 many institutions preclude playing the[2]
instruments because of 

 

 

 

 

 

 

 

 the risk of damage . This is especially[3]

true for woodwind instruments where the act of 

 

 

 

 

 

 

 

 playing rapidly
introduces air at a much higher humidity and temperature, trigger-
ing potentially damaging reactions 

 

 

 

 

 

 

 

 in the 

 

 

 

 

 

 

 

 wood. Moreover, even if
playing is permitted, it is fairly unlikely that a wind instrument
150–200 years old will be usefully 

 

 

 

 

 

 

 

 playable without 

 

 

 

 

 

 

 

 restoration
that goes well beyond normal conservation. 

 

 

 

 

 

 

 

 Sealing against leaks
is crucial in these instruments; 200-year old pads – when original
– are likely to leak, and cracks in the wooden body are quite 

 

 

 

 

 

 

 

 fre-
quent. These leaks strongly affect the acoustic impedance, render-
ing the instrument useless for the assessment of its musical
potential either by playing or by acoustic impedance measure-
ment. Occasionally 

 

 

 

 

 

 

 

 a museum will permit full restoration for play-
ing on a special occasion. Examples are the Brussels Musée des
Instruments de Musique, where an Adolphe Sax instrument (B.B.
mim.2601) was partially overhauled to play in the Sax bicentenary
celebrations in 2014, and the Robert Schumann School in Düssel-
dorf, where a Stengel bass clarinet in A, originally owned by the
Bayreuth Theatre and used in some original Wagner operatic per-
formances, was restored for a demonstration concert and future
use . But the great majority of wind instruments in museums[4]
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remain musically hidden from players or from direct sampling of
the sound.

However, museums will normally permit the 

 

 

 

 

 

 

 

 handling and
careful measurement of instruments that are not too fragile, by
an accredited researcher under supervision and the guidelines 

 

 

 

 

 

 

 

 of
ICOM/CIMCIM . This has been used to study the development[5]
of types of musical instrument and their keywork (see, 

 

 

 

 

 

 

 

 for exam-
ple, for clarinets), 

 

 

 

 

 

 

 

 but their sounds have so far been mostly[ ]6–8
inaccessible.

The 

 

 

 

 

 

 

 

 principle upon which the main methodology of this 

 

 

 

 

 

 

 

 paper is
based is 

 

 

 

 

 

 

 

 that the sound of a wind instrument 

 

 

 

 

 

 

 

 is dominated by the
shape of its air column, as indicated by its input impedance.
Although there are (and probably always have been) endless 

 

 

 

 

 

 

 

 argu-
ments about the influence of materials on a wind instrument, it has
been demonstrated that the energy radiated by the walls of the
tube into the room is inaudible 

 

 

 

 

 

 

 

 in 

 

 

 

 

 

 

 

 comparison with that emitted
by vibration of the air column, and that wall material has little
audible effect, as long 

 

 

 

 

 

 

 

 as it is 

 

 

 

 

 

 

 

 reasonably dense and has low poros-
ity . There is also very clearly an acoustic cooperation[ ]9–11
between the mouthpiece/reed and the resonator or air column,
and the mouthpiece is of great importance for the details 

 

 

 

 

 

 

 

 of the
timbre and for the ease of playing. However, the importance of
the resonator is shown by the observation that the character of
the instrument appears mostly to go with this rather than with
the mouthpiece : a clarinet-type mouthpiece of suitably small[12]
volume works reasonably well on an oboe; the instrument still
sounds like an oboe not 

 

 

 

 

 

 

 

 like a clarinet, and it overblows an octave
not a twelfth . In this paper we are concentrating on the res-[ , ]13 14
onator. Its acoustic properties are defined by the sets of resonance,
or 

 

 

 

 

 

 

 

 impedance, peaks that it possesses and the relationships
between them. If we can understand the influence of the detailed
shape of the 

 

 

 

 

 

 

 

 air column on the sound production, for all notes
and all relevant frequencies, we shall know a great deal about
the nature of the instrument. Furthermore, this knowledge is
objective, and not subject to the physiology or prejudices of any
player.

A well-preserved instrument from 1910 

 

 

 

 

 

 

 

 was used to make
quantitative comparisons for this trial. Standard acoustic computa-
tional methods (described below) were used to calculate the impe-
dance spectrum for each note of the instrument, and two tests of
the accuracy were performed: one by measuring the input impe-
dance directly in the laboratory, and the other by playing tests
on the instrument, measuring the frequency of the note emitted
at each fingering and looking at 

 

 

 

 

 

 

 

 the predicted intonations pro-
duced by both ‘normal’ and ‘alternative’ fingerings. Thus we inves-
tigate two questions: can we calculate impedance spectra with
sufficient accuracy without playing the instrument, and does this
give significant musical information about the instrument?

2. Modelling of woodwind instruments

The 

 

 

 

 

 

 

 

 development of mathematical and computational methods
of modelling woodwind instruments has taken place over more
than a century, beginning with the analytical ideas of Hemholtz
[15] [16]. Major contributions were made by Bouasse and by
Benade and his collaborators . The understanding of 

 

 

 

 

 

 

 

 woodwind[10]
acoustics progressed through analytical expressions for lossless
and then 

 

 

 

 

 

 

 

 lossy systems 

 

 

 

 

 

 

 

 , linear system calculations 

 

 

 

 

 

 

 

 ,[ ]17–19 [20]
analysis of the reed/mouthpiece system [e.g. 

 

 

 

 

 

 

 

 , impe-[ , ]15 21–23
dance of 

 

 

 

 

 

 

 

 the bell , non-linear treatment of the reed genera-[ , ]24 25
tor and other factors; an excellent recent treatment appears in[26]
Chaigne and 

 

 

 

 

 

 

 

 Kergomard . In 1979, Plitnik and Strong first[27] [28] 

 

 

 

 

 

 

 

 
applied the computer modelling method to the whole instrument.
They split the bore 

 

 

 

 

 

 

 

 (of an oboe in this case) into short cylindrical
segments, thus approximating the conical shape of the bore by

the staircase approximation, started from the calculated impe-
dance of the bell 

 

 

 

 

 

 

 

 radiating into open 

 

 

 

 

 

 

 

 air and summed 

 

 

 

 

 

 

 

 each complex
impedance, in series for the 

 

 

 

 

 

 

 

 segments and in parallel for the tone
holes. A reed cavity impedance was added 

 

 

 

 

 

 

 

 in parallel at the end
of the sum. The result was the spectrum of impedance peaks as a
function of frequency over the audible band. Note that this and
most other approaches are based on linear theory and strictly only
apply to small amplitudes. The non-linear effects of large ampli-
tudes are critical in the understanding of the peaks selected, as dis-
cussed below, but 

 

 

 

 

 

 

 

 there is agreement amongst all 

 

 

 

 

 

 

 

 authors cited
that linear acoustics suffices for the calculation of 

 

 

 

 

 

 

 

 the tube
resonances.

This general approach is still used today. Developments since
Plitnik and Strong include improvements to the expressions for
tone hole impedances, for wall losses, for the radiation impedance
of the bell, for the influence of the reed generator and in the matrix
formulation (analogous to electrical transmission line theory)
which significantly 

 

 

 

 

 

 

 

 speeds up the calculation . Ned-[ , , ]29 34 35
erveen has added valuable insight into the elements 

 

 

 

 

 

 

 

 of the[30]
modelling equations and a number of experimental measure-
ments. Research on simulating clarinet and 

 

 

 

 

 

 

 

 saxophone sounds
dynamically using digital formulations of the air 

 

 

 

 

 

 

 

 column 

 

 

 

 

 

 

 

 and reed/
mouthpiece system 

 

 

 

 

 

 

 

 in the time 

 

 

 

 

 

 

 

 domain are also reaching an inter-
esting stage .[ , , , ]23 31 32 34

Two computer implementations of linear acoustic modelling
have been made more widely available and are cited in the litera-
ture. The program IMPEDPS was written by Robert Cronin in the
1990s, based on the developments and equations given by Keefe
[29] and by discussions with Keefe and Benade. RESONANS was
developed around the same time by IRCAM and the acoustics
department of the Université du Maine in Le Mans (a brief note
on application to recorders is given by Bolton ). Valuable sum-[33]
maries of the necessary equations for each 

 

 

 

 

 

 

 

 component of the 

 

 

 

 

 

 

 

 trans-
mission 

 

 

 

 

 

 

 

 line matrix 

 

 

 

 

 

 

 

 formulation have been given by Scavone [34]
and more recently Yong .[35]

It turns out that the methodology descended 

 

 

 

 

 

 

 

 from Plitnik and
Strong is quite general for woodwind instruments that have reed
generator excitation. It may also be used for flutes and recorders
by using admittance peaks rather than impedance peaks, since
the open entry ends of air-driven oscillators require a pressure
node rather than antinode at the entry end. We have therefore
used the methodology to test the basic assertion, that acoustic
impedance spectra can be calculated by geometric measurements
on instruments to sufficient 

 

 

 

 

 

 

 

 accuracy to give musically useful
information. We first review the advances in understanding of
woodwind instruments that have been made 

 

 

 

 

 

 

 

 by both experimental
and theoretical modelling of impedance spectra.

2.1. 

 

 

 

 

 

 

 

 Applications of impedance spectra to the understanding of

woodwind instruments

The understanding of the influence of impedance spectra came
first through experimental measurements and approximate ana-
lytical solutions of the acoustic equations, with 

 

 

 

 

 

 

 

 particularly nota-
ble contributions made by 

 

 

 

 

 

 

 

 Benade (summarised in ), Backus[10]
[20,54] and their co-workers. Indeed, the increased understanding
of instrument acoustics provided by measurements and calcula-
tions of input 

 

 

 

 

 

 

 

 impedance led Benade directly to a new design of
clarinet bore and keyhole placement, in which inaccuracies in into-
nation were 

 

 

 

 

 

 

 

 corrected by enlargement or contraction of the bore
around pressure nodes . Clarinets to the ‘Benade NX design’[ ]36–39
are manufactured by Stephen Fox Clarinets (Toronto) .[40]

There are various different ways in which input impedance can
be measured experimentally. Dalmont provides a compre-[ , ]41 42
hensive review of input impedance measurement techniques
developed during the 

 

 

 

 

 

 

 

 20th century. One of the most popular
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approaches (pioneered by 

 

 

 

 

 

 

 

 Benade and Backus) exploits the direct
definition of impedance as the ratio between input pressure and
acoustic volume flow. The approach involves passing an acoustic
signal generated by a loudspeaker through a high impedance
capillary and then into the instrument under investigation. The
volume flow entering the instrument can be determined from
the pressure in the cavity between the loudspeaker and the
capillary. By then measuring 

 

 

 

 

 

 

 

 the pressure at the entrance to the
instrument, the input impedance can be deduced. In early
capillary-based measurement systems, a feedback loop was
employed to maintain 

 

 

 

 

 

 

 

 the cavity 

 

 

 

 

 

 

 

 pressure (and therefore the vol-
ume flow injected into the instrument) constant, such that the
pressure measured at the entrance to the instrument 

 

 

 

 

 

 

 

 was directly
proportional to the input impedance. In more modern systems, the
cavity pressure is determined as a function of frequency, either
using a second microphone positioned within the cavity, or via cal-
ibration. A very compact 

 

 

 

 

 

 

 

 and portable capillary-based system has
been developed by 

 

 

 

 

 

 

 

 the Institute of Musical Acoustics, Vienna; this
system is commercially-available and is known as BIAS (Brass
Instrument Analysis System). As its acronym implies, it was 

 

 

 

 

 

 

 

 origi-
nally developed for brasswind, and later modified for woodwind
[43] and it has been applied in the quality control of brasswind
instruments since 1989 . The knowledge and application of[44]
impedance and other scientific measurements to instrument man-
ufacturing has been assisted in recent years by the Pafi collabora-
tion (Plateforme modulaire d’aide à la facture Instrumentale,
[45]) in 

 

 

 

 

 

 

 

 France, which seeks to make scientific measurements,
including input impedance, available to small 

 

 

 

 

 

 

 

 manufacturers
together with tools to predict the effects of changes.

Another method of measuring acoustic impedance is acoustic
pulse reflectometry. In this method, an acoustic pulse is sent into
the instrument under test and the reflected signal is measured.
Analysis of the reflected signal enables the input 

 

 

 

 

 

 

 

 impulse response
of the instrument to be determined, from which both its bore pro-
file and input impedance can be calculated. Details of this method
can be found in .[ ]46–48

Many of the studies have been made primarily to test the mod-
elling theory, rather than to investigate 

 

 

 

 

 

 

 

 modern or historical
instruments themselves. Campbell 

 

 

 

 

 

 

 

 has 

 

 

 

 

 

 

 

 written a review of the
acoustic evaluation of wind instruments but the entry on wood-
wind instruments is 

 

 

 

 

 

 

 

 very short . The only acoustical 

 

 

 

 

 

 

 

 investiga-[49]
tions of historic clarinets appears to be the work of Jeltsch and co-
workers. Jeltsch, Gibiat and Forest were able to perform acoustic
impedance measurements on a set of four six-key clarinets made
by 

 

 

 

 

 

 

 

 Joseph Baumann (fl. Paris, c. 1790 – c. 1830) . The 

 

 

 

 

 

 

 

 set was[50]
in 

 

 

 

 

 

 

 

 very good condition and playing was 

 

 

 

 

 

 

 

 permitted, so they could
compare impedance measurements with 

 

 

 

 

 

 

 

 playing 

 

 

 

 

 

 

 

 frequencies, and
also make comparisons with a modern (Noblet) clarinet. The set
of historical clarinets was particularly interesting, since their
maker supplied the distinguished clarinettist and pedagogue
Jean-Xavier Lefévre, who refers to these clarinets in his famous
tutor and gives particular fingerings to exploit or overcome[51]
their characteristics. In their data analysis they concentrated on
the harmonicity relations produced by the fingerings of the clar-
inets. They showed, 

 

 

 

 

 

 

 

 for example, that the first register was not well
tuned, and also invented the concept of ‘impedance maps’, which
clearly show the tuning and harmonicity relationships in the Bau-
mann instruments. 

 

 

 

 

 

 

 

 Lefévre remarked on the 

 

 

 

 

 

 

 

 tuning in his tutor and
also composed his sonatas mainly in the second register of the
instrument. The modern clarinet showed much better alignment
of the harmonics. We use and develop the impedance map concept
further in the present study ( ). Jeltsch et al. alsoSection 5.3
observed that higher notes 

 

 

 

 

 

 

 

 of the instruments were supported by
apparently random combinations of resonances; we shall also
return to this point in . Jeltsch and Shackleton haveSection 5.3

performed 

 

 

 

 

 

 

 

 a similar study on early nineteenth century clarinets
by Alexis Bernard and Jacques Francois Simiot .[52]

The first application of computational impedance modelling to
a complete instrument was by Plitnik and Strong in 1979 to[28]
the oboe. Their 

 

 

 

 

 

 

 

 main concern in the modelling was to demonstrate
the close agreement between calculated and measured impe-
dances. This 

 

 

 

 

 

 

 

 indeed was found, with peaks being accurately located
and 

 

 

 

 

 

 

 

 peak shapes in good agreement, though the peak-to-valley
ratios in the experimental measurement were typically a factor
of 2 lower than in the simulation. They ascribed this to
unaccounted-for losses, in particular pad and finger resilience,
socket junctions and 

 

 

 

 

 

 

 

 sharp corners of tone holes, and 

 

 

 

 

 

 

 

 we should
expect similar discrepancies in the case of clarinets. They investi-
gated a single oboe and were able to demonstrate why certain
notes were ‘bad’ and why certain 

 

 

 

 

 

 

 

 alternative 

 

 

 

 

 

 

 

 fingerings worked.
No application to historical instruments was made. Soon after,
Schumacher developed the theory of 

 

 

 

 

 

 

 

 the clarinet to include[53]
the reed/mouthpiece generator and used 

 

 

 

 

 

 

 

 a similar computational
approach to Plitnik and Strong. He tested the theory on the exper-
imental measurements of Backus on a single clarinet and[54]
obtained similarly good agreement.

In the 1990s the IMPEDPS program was written by 

 

 

 

 

 

 

 

 Cronin and
applied to the understanding of the behaviour of fingerings and
auxiliary 

 

 

 

 

 

 

 

 fingerings on modern and replica baroque bassoons
[55,56]. He was able 

 

 

 

 

 

 

 

 to demonstrate the 

 

 

 

 

 

 

 

 reasons for ‘surprising’ fin-
gerings shown in contemporary fingering charts for the baroque
bassoon, hence 

 

 

 

 

 

 

 

 was able to obtain useful information on historical
instruments by impedance calculations.

One of the authors of the current 

 

 

 

 

 

 

 

 paper, Dart, himself a maker of
reproduction baroque bassoons, applied computational impedance
modelling to the study of historical instruments in museums, in
2011, also using IMPEDPS . He examined approximately 80%[57]
of surviving baroque bassoons, making detailed internal measure-
ments of thirty-six and computing impedance spectra. This
enabled him to compare stylistic traits, to establish a new typology
of baroque bassoons and to study eighteenth-century woodwind
construction processes and tooling. He was 

 

 

 

 

 

 

 

 also able to discover
connections between an instrument’s internal design and its prob-
able playing characteristics. In two cases of incomplete historical
instruments, he reconstructed the design and then built replicas
of each. He found 

 

 

 

 

 

 

 

 them to have different playing characteristics
which could be understood in terms of their calculated acoustic
impedance spectra.

In an investigation reported in 2012, Hichwa and Rachor [58]
used similar acoustic models to Keefe in a new program designed
to investigate the effects of 

 

 

 

 

 

 

 

 geometry in more detail, and 

 

 

 

 

 

 

 

 to apply
mathematical analysis to the results. From measurements of 44
original bassoons and 14 reproductions from the baroque and early
classical period, they were able to deduce the temperaments used
by the original makers, which clustered in identifiable classes
around 

 

 

 

 

 

 

 

 mean-tone temperament. They showed by analysis how
best the boot joint can be made to aid intonation. They were also
able to identify 

 

 

 

 

 

 

 

 acoustic inadequacies in some of the original
designs, normally in 

 

 

 

 

 

 

 

 the wing-joint, thus aiding the period-
instrument maker in the selection of instruments to reproduce.

Dalmont, Gazengel, 

 

 

 

 

 

 

 

 Gilbert and Kergomard have assessed clar-
inets, alto saxophones and oboes , using both impedance mea-[59]
surements and the RESONANS software, and reached valuable
conclusions about the quantitative influence of the reed impe-
dance, the placement of the register hole, and the measurement
and 

 

 

 

 

 

 

 

 effect of inharmonicity in the resonances.
Sharp and co-workers have applied impedance measurement

by both the capillary system and acoustic pulse reflectometry
(see ) to the question of consistency of large-scale man-Section 

 

 

 

 

 

 

 

 4.2
ufacture of woodwind 

 

 

 

 

 

 

 

 instruments: trumpets , oboes and[60] [61]
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clarinets [62]. In the case of oboes, for example, 

 

 

 

 

 

 

 

 significant playing
differences between instruments were found to be caused by rela-
tively minor variations, such as in the venting height 

 

 

 

 

 

 

 

 of one key,
indicating that instrument variability can be at least partly due to
the final regulation of the instrument. However, there were also lar-
ger quality-control differences such as variations in the bore profile.

3. Computational methodology

Our approach has been based largely on the equations devel-
oped by Keefe , and uses his expressions for the impedance[29]
of conical segments including thermal and viscous losses, and for
tone holes (closed, open and open with a key pad at a certain dis-
tance above the hole). Keefe’s paper includes most of the advances
made in theoretical modelling since Plitnik and Strong and was
verified by experiments made by himself and Cronin. It is a linear,
small signal plane- and spherical-wave approach. We 

 

 

 

 

 

 

 

 shall discuss
and cite sources for the key parameters and the necessary equa-
tions. These are, the input constants, the radiation impedance of
a bell, the impedance of a conic 

 

 

 

 

 

 

 

 section (with thermal and viscous
losses at a smooth wall), the tone hole impedances (open, closed
and with a pad above) and the 

 

 

 

 

 

 

 

 reed impedance.

3.1. Input parameters

The 

 

 

 

 

 

 

 

 following parameters were used:

Speed of sound: 347 m s 1

Density of air 1.19 kg.m 3

Viscosity of air 1.85 10 05 Pa.s
Specific heat ratio C p/C v 1.4
Thermal conductivity of air 2.63 10 02 W.m1 .K1

Specific heat at constant pressure C p 1.006 J.kg1.K1

The parameters above were chosen for appropriate playing condi-
tions, that is, a somewhat elevated temperature (27 C) and humid-°

ity and a substantially elevated CO 2 content of the exhaled air .[30]
The laboratory measurements were made under normal laboratory
conditions, approximately 

 

 

 

 

 

 

 

 20 C and normal atmospheric composi-°

tion. Coincidentally but conveniently, the product of air density and
speed of sound (which determines resonant frequencies) for these
two conditions agree to better than 1 part in 8000. This is approx-
imately 0.2 cents, below the limits of audible perception, so we
need no corrections 

 

 

 

 

 

 

 

 when comparing theoretical and experimental
data.

3.2. Radiation impedance of a bell

The 

 

 

 

 

 

 

 

 precise calculation of the radiation impedance for a duct
termination of various shape and flare is the subject of many
papers (for example, ). As noted by Chaigne and Ker-[ , , , ]24 25 27 63
gomard , p. 684], there are no straightforward formulas for 

 

 

 

 

 

 

 

 the[27]
radiation impedance of a cone or flared bell; however, in a detailed
spherical-wave treatment, Hélie and Rodet have given an 

 

 

 

 

 

 

 

 ana-[63]
lytic (but computationally intensive) expression for the radiation
impedance of a segment of 

 

 

 

 

 

 

 

 a pulsating sphere, which should model
a bell quite accurately. Dalmont, 

 

 

 

 

 

 

 

 Nederveen and Joly have[25]
experimentally investigated short, rapidly-flaring catenoidal bells
and their approach may be applicable to at least some clarinets.
Importantly, their results show that the overall input impedance
of a clarinet-like tube is only weakly influenced by the radiation
impedance of the bell. This might be expected since one purpose
of the design of the bell 

 

 

 

 

 

 

 

 is to reduce its radiation impedance; more-
over, the values of the radiation impedance of the bell are some

three orders of magnitude lower than those of the overall instru-
ment impedances, and in any case have 

 

 

 

 

 

 

 

 little influence after the
bottom notes in each register. We have investigated this question
in the 

 

 

 

 

 

 

 

 ‘bell note’ cases by calculating the impedance spectra using
(a) the semi-empirical formula due to Levine and Schwinger ,[24]
(b) the expression due to Hélie and Rodet (Eq. 23) and (c) the
empirical formula due to Benade and Murday . The only differ-[64]
ence was a less than 5% change in the 

 

 

 

 

 

 

 

 amplitude of some of the
impedance peaks, with 

 

 

 

 

 

 

 

 no detectable change in their frequency,
in the 20 – 2000 Hz range of our calculations. We have therefore
chosen to use the empirical formula of Benade and Murday, which
has the benefit of experimental derivation and very 

 

 

 

 

 

 

 

 efficient com-
putation. Both 

 

 

 

 

 

 

 

 tone holes in cylindrical bodies and radiating tubes
with finite flanges are covered, and they give empirical formulas
for the end correction. This is converted into impedance by the
standard formula for a lossless cylinder (e.g. ), since there are[65]
no walls to cause losses.

3.3. 

 

 

 

 

 

 

 

 The impedance of a conical segment

Eq. (21) of Keefe’s 1990 paper on the modelling of wood-[29]
wind air columns was 

 

 

 

 

 

 

 

 used. This is a spherical wave solution,
and includes viscous and thermal losses at a smooth wall. The wall
losses are averaged by putting 

 

 

 

 

 

 

 

 them equal to the loss 

 

 

 

 

 

 

 

 at the centre
of the conical segment, but since the losses vary with radius it is
then essential to keep the segments short. A difference of less than
10% between the end diameters of the segments was used. Kulik
has proposed an analytic solution to the ‘long cone with losses’
problem that 

 

 

 

 

 

 

 

 offers much faster computation. However, this[66]
has been criticised on physical arguments by Grothe , who also[67]
finds that it does not converge to the staircase or multi-conic mod-
els. Grothe does, however, show that an improved solution could
be possible using the work 

 

 

 

 

 

 

 

 of Nederveen .[30]

3.4. 

 

 

 

 

 

 

 

 Tone hole impedances

Eq. (3) of Keefe’s 1990 paper on the modelling of wood-[29]
wind air columns was used, with effective length corrections as
given in his Eqs. (5)–(9). These depend on both theory and on
experiments by Benade and Murday 

 

 

 

 

 

 

 

 and by Cronin 

 

 

 

 

 

 

 

 and Keefe[64]
[unpublished]. These give the series and 

 

 

 

 

 

 

 

 shunt impedances of open
and closed toneholes 

 

 

 

 

 

 

 

 and include viscous and thermal losses and
the presence of a pad above the hole. Following Cronin we divide
the series impedance of the tone hole equally between the tone
hole itself 

 

 

 

 

 

 

 

 and the bore segment. The ‘‘flange” of the open hole is
taken as the cylindrical body of the tube and a correction is
included for the corner radius 

 

 

 

 

 

 

 

 of the outside (but not 

 

 

 

 

 

 

 

 the inside)
edge of the hole.

Several authors 

 

 

 

 

 

 

 

 have 

 

 

 

 

 

 

 

 published theories and/or experiments on
tone-hole impedance since 1990: Nederveen et al. , Dubos[68]
et al. and Dalmont et al. 

 

 

 

 

 

 

 

 . However, all 

 

 

 

 

 

 

 

 these authors state[69] [70]
that the accuracy of the experimental measurements is at present
insufficient to distinguish between the theoretical models. Dal-
mont et al. and also Yong provide figures for the length correc-[35]
tions on the different theories showing that the differences are not
large. Moreover, the above papers mainly treat open or closed tone
holes. The only information for tone holes covered with a 

 

 

 

 

 

 

 

 key or
plateau that appears to have been published since Keefe’s paper
of 1990 is that 

 

 

 

 

 

 

 

 of Dalmont, Nederveen and Joly . However, they[25]
do not include the case of 

 

 

 

 

 

 

 

 a tone hole in the side of a cylinder; such
holes comprise 22 out of the 24 holes on this bass clarinet. We
have therefore retained Keefe’s expressions and the experimental
data of Benade and Murday , used originally in the IMPEDPS[64]
program, in 

 

 

 

 

 

 

 

 our work.
We do not include external interactions between tone holes in

this model, in common with Plitnik and Strong , and Cronin[28]
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[55]. This 

 

 

 

 

 

 

 

 may be a source of error, but 

 

 

 

 

 

 

 

 interaction equations do not
appear to be available 

 

 

 

 

 

 

 

 for key-covered open 

 

 

 

 

 

 

 

 holes. We expect the
effect to be relatively small for bass clarinets, with widely-
separated and covered holes. The work of Lefebvre et al. [71]
suggests that the error will be to flatten the computed 

 

 

 

 

 

 

 

 resonant
frequencies by perhaps a few cents.

3.5. Reed impedance

The reed volume (including an estimate of 

 

 

 

 

 

 

 

 the average vibrating
part of the volume) should in principle be accounted for as a com-
plex impedance in parallel with that of the column, since the oscil-
lation forces the reed away from the mouthpiece lay . More[ , ]30 72
accurately, we 

 

 

 

 

 

 

 

 should 

 

 

 

 

 

 

 

 need the impedance as 

 

 

 

 

 

 

 

 seen from the
mouthpiece looking at the reed, whose imaginary part should be
equal and opposite to that of the resonance peak (to ensure that
there is no phase shift around the feedback loop to the reed). This
therefore includes a contribution from the mouth and oral cavities.
Hence, the frequencies selected by the instrument will be slightly
below the impedance peaks of the tube alone, even when including
a segment of equivalent volume to the mouthpiece.

Benade and Gans showed that the shift is calculated by bal-[73]
ancing the phase shift between pressure and flow in the mouth-
piece with that arising 

 

 

 

 

 

 

 

 from the inertia and stiffness of the reed
and that of the oral cavity. This has been considered by Nederveen
[30] [59]and by Dalmont and co-workers . The latter have reported
theoretical and experimental work on soprano clarinets, oboes and
alto saxophones using an artificial mouth with a blowing machine.
They show that reed impedance effects can be satisfactorily incor-
porated in an impedance model by adding a frequency-
independent equivalent length correction to the end of the tube
(including 

 

 

 

 

 

 

 

 the mouthpiece volume). For soprano clarinets, this
end correction was found experimentally to be 

 

 

 

 

 

 

 

 7 ± 2 mm, some-
what smaller than Nederveen’s estimate of 10 mm for the length
correction itself, plus a further 5 mm for 

 

 

 

 

 

 

 

 a correction due to reed
damping. No estimates have been reported on bass clarinets to
our knowledge, but an expression 

 

 

 

 

 

 

 

 is given by Chaigne and Kergo-
mard [ Eq. 9.17] from which we may estimate the scaling fac-[27]
tor. They give the ‘embouchure equivalent length’, Dl as

Dl ¼
qc 2

pM

Sr

S
:H ð Þ1

where is the density of air, the speed of sound,q 

 

 

 

 

 

 

 

 c p M the mouth
(closure) pressure, S r the reed area, the bore 

 

 

 

 

 

 

 

 area and the slitS H

opening of the 

 

 

 

 

 

 

 

 reed when not under pressure. In comparison to a
soprano clarinet, a bass clarinet of the same pitch class scales lin-
early in its length and 

 

 

 

 

 

 

 

 linearly 

 

 

 

 

 

 

 

 in its bore area (not diameter). Its
mouthpiece thus has typically twice the 

 

 

 

 

 

 

 

 reed area, twice the bore
area, twice the slit 

 

 

 

 

 

 

 

 opening and a similar mouthpiece pressure
(resulting in a greater air flow through the larger aperture). The
value of Dl can then be roughly estimated 

 

 

 

 

 

 

 

 as around double the 

 

 

 

 

 

 

 

 cor-
rection in soprano clarinets, namely 14 ± 4 mm, which should be
increased by 

 

 

 

 

 

 

 

 about 6% (0.84 mm) in the present case since it is an
instrument in A. This estimate is not accurate enough to incorporate
immediately in the computations (in fact, Dalmont et al. suggest
using this length as a fitting parameter) but will be discussed after
presentation of the results. In our implementation we use an equiv-
alent length correction as suggested 

 

 

 

 

 

 

 

 by Dalmont et al.

3.6. Verification and performance 

 

 

 

 

 

 

 

 of the program

The IMPEDPS program and its 

 

 

 

 

 

 

 

 source code was made available
to us. We were able to configure our program, written in MatLab TM,
to have identical implementations of the parameters and equa-
tions, and thereby verify that the outputs were 

 

 

 

 

 

 

 

 indistinguishable

within computational 

 

 

 

 

 

 

 

 precision. This gives the ability to calculate
a complete instrument (50 notes including alternatives) and to
analyse its resonances in about one minute 1, and also gives the
facility to introduce different acoustic models. For example, it was
straightforward to introduce and calibrate an embouchure equiva-
lent length, following Dalmont et al. and this was adopted.[59]

3.7. Selection of harmonics by the 

 

 

 

 

 

 

 

 instrument

Once an impedance spectrum has been calculated 

 

 

 

 

 

 

 

 the next
stage 

 

 

 

 

 

 

 

 is to discover which peaks are actually excited. This uses a
most important principle: the possible resonant frequencies in a
reed-driven air column are those for which the input impedance
of the column is a maximum. This principle was established by
Benade (1966) building on work of Bouasse and it contra-[16]
dicted the long-held theory, summarised by , that the mouth-[17]
piece/reed system generates 

 

 

 

 

 

 

 

 a broad sound spectrum from which
the air column resonances filter out the tone that is 

 

 

 

 

 

 

 

 heard. Benade
showed in some cleverly-designed 

 

 

 

 

 

 

 

 experiments that this was not
how a reed instrument worked. This and other principles are dis-
cussed in Benade and Gans and in expanded mathematical[73]
detail in Worman . An essential feature of the interpretation[26]
is that 

 

 

 

 

 

 

 

 the 

 

 

 

 

 

 

 

 reed generator is intrinsically non-linear and therefore
necessarily generates harmonics, as does any non-linear oscillator.
The amplitude of the harmonics above the fundamental necessarily
increases as the blowing pressure increases (until the reed starts to
close on the mouthpiece). Hence, if there are several impedance
peaks 

 

 

 

 

 

 

 

 in 

 

 

 

 

 

 

 

 the tube spectrum , these willthat are harmonically 

 

 

 

 

 

 

 

 related

all cooperate in generating standing waves when 

 

 

 

 

 

 

 

 they are reflected
back to the reed. This ‘mode locking’ effect will stabilise the oscil-
lation, and was termed by Benade a ‘regime of 

 

 

 

 

 

 

 

 oscillation’ follow-
ing the earlier work of Bouasse. As the amplitude increases, the
influence of upper harmonics also 

 

 

 

 

 

 

 

 increases (initially by the thn

power of the amplitude of the fundamental). This both further sta-
bilises the 

 

 

 

 

 

 

 

 note and adds to the richness of the harmonic spectrum.
One consequence is that if the impedances are slightly stretched
from true harmonic relationship then the note will sharpen as
the amplitude increases, and flatten if they are compressed.

The harmonic spectrum and 

 

 

 

 

 

 

 

 its stability thus has a complicated
dependence 

 

 

 

 

 

 

 

 on blowing pressure as well as on the basic clarinet
resonances at a particular fingering . For the purposes of this[36]
paper, we simply look for a good match between the first and at
least one other resonance with harmonics of the pitch of the note
being played, in the first register; on the clarinet these will be the
third and if possible the fifth harmonics. In the second 

 

 

 

 

 

 

 

 register, it is
the second resonance 

 

 

 

 

 

 

 

 peak that aligns with the fundamental of the
sounded frequency, since the register key shifts 

 

 

 

 

 

 

 

 the first peak out
of ‘alignment’ with the harmonics so that it can no longer partici-
pate in a regime of oscillation. In the third register, the third reso-
nance peak takes over this function. The cutoff phenomenon in
instruments with tone holes and a bell (see ), whereby[ , , ]10 30 36
frequencies above cutoff 

 

 

 

 

 

 

 

 do not reflect 

 

 

 

 

 

 

 

 at the finger holes or the
bell but pass through into open air, means that higher frequencies
are unimportant in maintaining oscillation, though they can
weakly affect the tonal colouration. We note that this effect is
roughly twice as significant in clarinets than in bassoons, oboes
or saxophones because of the absence of even harmonics,
especially at low pitches, 

 

 

 

 

 

 

 

 in the clarinets. As a rough rule, notes
above written G in 

 

 

 

 

 

 

 

 the second register (i.e. notes above sounding
pitch E4, approximately 330 Hz) have all their harmonics above
the nominal cutoff 

 

 

 

 

 

 

 

 frequency. We shall examine the cutoff
phenomenon in more detail in .Section 5.3

1 On a MacBook Pro with 3 GHz Intel Core i7.
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4. Materials and 

 

 

 

 

 

 

 

 methods

4.1. Description of the instrument and measurements

The 

 

 

 

 

 

 

 

 instrument used for the tests was a Heckel bass clarinet in 

 

 

 

 

 

 

 

 A
from 1910 shown in owned by one of 

 

 

 

 

 

 

 

 the authors (DKB). It isFig. 1
a 21-key system including 5 plateau keys 

 

 

 

 

 

 

 

 (holes I and IV are open
fingerholes), and is German 

 

 

 

 

 

 

 

 or Albert system 

 

 

 

 

 

 

 

 with a so-called
patent C#. In total, 22 of the 24 holes are covered by keys or
plateaux.

Dated at 

 

 

 

 

 

 

 

 1910 from Heckel records 

 

 

 

 

 

 

 

 and formerly owned by[74]
the Kiev Symphony Orchestra, this has been kept in playing condi-
tion all its life, but only 

 

 

 

 

 

 

 

 lightly played, no doubt as a consequence
of there being relatively few orchestral parts for the bass clarinet in
A . It has been recently repadded with leather pads similar to[75]
the originals and is in very good playing condition. It has a straight
bell, so there is no need to consider complications due to a curved
bell. The effect of the curve of the crook may be estimated from
data given by Félix, Dalmont and Nederveen (2012) . The min-[76]
imum radius of curvature (tube internal radius/bend radius) in this
particular crook is j ¼ 0 38, and from their , the length cor-: Fig. 4
rection will be at 

 

 

 

 

 

 

 

 maximum approximately 0.8 mm. We have
neglected 

 

 

 

 

 

 

 

 this quantity in the calculations at present, though it is
automatically 

 

 

 

 

 

 

 

 taken 

 

 

 

 

 

 

 

 into account in the empirical embouchure cor-
rection discussed below.

Bore diameters were measured with a large set of graduated cir-
cular 

 

 

 

 

 

 

 

 Tufnol discs on the end of aluminium tubes. There was no
sign of ellipticity due to shrinkage. The bore is 23.2 mm for all its
length, with a largely-conical flare beginning 153 mm from the
bell. It is therefore a good experimental instrument for this project.
The mouthpiece is not original, but made by E. Pillinger closely to
the dimensions of an original Heckel Bb 

 

 

 

 

 

 

 

 bass clarinet mouthpiece
in Nuremberg (D.N.gnm.MIR480, which have been published by
Bär .[77]

Tone hole positions were measured with an EC Class II tape
measure, further checked against a calibrated 600 mm vernier
height gauge, to 0.5 

 

 

 

 

 

 

 

 mm always 

 

 

 

 

 

 

 

 referenced from the end of a joint;
tone hole diameters and depths and bore disc diameters were mea-
sured with a SPI 30-440-2 (Super Polymid-Fiberglass Reinforced
Plastic) caliper with accuracy ± 

 

 

 

 

 

 

 

 0.1 mm. In addition to the tone hole
centres and diameters (measured both along and across the clar-
inet axis), the chimney depth, diameter of the body at 

 

 

 

 

 

 

 

 the tone hole
position, the diameter of the tone hole 

 

 

 

 

 

 

 

 keypad (where fitted) and
its opening height were measured. The radius of curvature of the
outer tone hole edges was estimated at 

 

 

 

 

 

 

 

 1.0 mm. These parameters
enter 

 

 

 

 

 

 

 

 into the expression for the tone hole impedance when
opened. Approximately 300 measurements in all were used to
describe the instrument. We estimate that the parameters 

 

 

 

 

 

 

 

 most
affecting the tuning (the tone hole positions) are measured to
approximately 0.3%, corresponding to an average tuning accuracy
of 5 

 

 

 

 

 

 

 

 cents. Since each length measurement is independent, this

error applies separately to each note, and is not cumulative.
The 

 

 

 

 

 

 

 

 mouthpiece and crook were measured by filling 

 

 

 

 

 

 

 

 with 

 

 

 

 

 

 

 

 water
and weighing the water, 

 

 

 

 

 

 

 

 taking the average of ten measurements,
giving an estimated accuracy of ±0.5%. We do not know how clo-
sely the copy of this Bb mouthpiece is to the original supplied with
the A clarinet. However, the results should be consistent between
calculation and playing.

4.2. Experimental impedance measurement systems

Two systems were used to measure impedances in the labora-
tory: an Open University in-house single-microphone capillary
system that has been extensively calibrated , and the commer-[78]
cial BIAS system . A single measurement (G3) was made with[79]

the in-house system, which verified that the agreement between
the methods was good. For all subsequent measurements the BIAS
system was used. Both the BIAS and single-microphone measure-
ment systems are capillary-based. That is, a capillary channel 

 

 

 

 

 

 

 

 con-
nects a controlled sound source to the entrance of the wind
instrument to be 

 

 

 

 

 

 

 

 measured. The capillary 

 

 

 

 

 

 

 

 is designed to have an
impedance that is frequency independent, and has a much larger
magnitude than that of the air column 

 

 

 

 

 

 

 

 being measured.
The general principle draws from determining two characteris-

tic signals at each end of the capillary, which allows to obtain a
good estimation of both the pressure and volume 

 

 

 

 

 

 

 

 flow rate at the
entrance of the measured instrument (one of which may be made
constant using some active control). Provided the wavelength 

 

 

 

 

 

 

 

 is
sufficiently above the inner diameter of the instrument’s bore,
the ratio of pressure over flow rate gives the plane wave compo-
nent of the impedance. Both 

 

 

 

 

 

 

 

 systems are calibrated with a similar
two-calibration method. The only difference between them is that
the single-microphone calibration relies on the assumption that
the cavity pressure remains the same regardless 

 

 

 

 

 

 

 

 of the object being
measured.

In contrast to a number of alternative, more accurate, impe-
dance measurement systems, one advantage of capillary-based
impedance measurement systems is that the apparatus can be
made very compact. This is particularly useful in the context of
the measurement of historical instruments, which often require
the equipment to be transported to a museum. Furthermore, the
measurement does not require post-processing and directly pro-
vides a sufficiently accurate impedance measurement over the fre-
quency range of interest, which in our case 

 

 

 

 

 

 

 

 is 20–2000 Hz. As
shown below, the cutoff frequency beyond which standing waves
are not formed in the instrument is approximately 1000 Hz in
the Heckel instrument.

In the BIAS 

 

 

 

 

 

 

 

 system a chirp signal is sent to a loud-[ ]80–82
speaker while a microphone monitors the acoustic pressure in
the cavity between the loudspeaker and the capillary. The envelope
of the chirp signal is designed to compensate for the cavity reso-
nances, such that the variation in the acoustic flow emerging from
the capillary is minimised. By measuring the pressure 

 

 

 

 

 

 

 

 amplitude
recorded by a second microphone at the entrance to the air column
under test, the input impedance magnitude can be determined.
Impedance phase information can also be obtained from the sys-
tem through the use of a phase meter connected to the two
microphones.

In the Open University in-house single-microphone capillary
system, there is no cavity 

 

 

 

 

 

 

 

 microphone. Even though the cavity
pressure is not monitored during a measurement, the apparatus
is still able to provide accurate values of input impedance magni-
tude via prior calibration. Moreover, despite only incorporating
one microphone, this set-up is also able to provide accurate mea-
surements of input impedance phase . However, unlike the[78]
BIAS system, the single-microphone system is an in-house design,
whose set-up and operation is more cumbersome. This decreased
ease of use can represent a considerable constraint for measure-
ment of historical instruments at 

 

 

 

 

 

 

 

 specific locations, which is why
the BIAS system was preferred.

An adaptor was made from nylon to fit 

 

 

 

 

 

 

 

 the BIAS system at one
end and the crook socket of the bass clarinet at the other. The vol-
ume of the adaptor was made to be the same as that of the instru-
ment mouthpiece at 28 cm 3, and the end fitted closely to the BIAS
system. The instrument was therefore measured in the fully
‘pushed in’ condition, which refers to its sharpest possible tuning.

For any single measurement the appropriate note was fingered,
while the BIAS system performed the frequency scan. It was evi-
dent during the experiments that the slightest inaccuracy in finger-
ing 

 

 

 

 

 

 

 

 or insufficient pressure on the pad, resulting in a tiny leak at
the finger or pad, changed the amplitude of the impedances, espe-
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cially that of the first resonance 

 

 

 

 

 

 

 

 peak, 

 

 

 

 

 

 

 

 quite drastically. Each 

 

 

 

 

 

 

 

 mea-
surement was therefore repeated after relaxing the 

 

 

 

 

 

 

 

 fingering, to
check that the two scans were essentially identical. This empha-
sizes the point made in , that the instrument must be inSection 1
good, leak-free condition for meaningful impedance
measurements.

4.3. Audio frequency measurements

In order to compare the measured and calculated impedances
with 

 

 

 

 

 

 

 

 the pitches actually produced, the instrument was 

 

 

 

 

 

 

 

 played
(after warming up), and the sounds recorded over chromatic scales.
Each note was played for several seconds, without looking at a
tuner and while attempting to play in the natural ‘centre’ of each
note. Two sets of recordings were made, one with the mouthpiece
pushed in (corresponding to the 

 

 

 

 

 

 

 

 acoustic measurement conditions)
and the other 

 

 

 

 

 

 

 

 with the 

 

 

 

 

 

 

 

 mouthpiece pulled out 10.8 mm, the max-
imum practical on this instrument, to attempt correction of the
perceived sharpness 

 

 

 

 

 

 

 

 when referred to A4 = 

 

 

 

 

 

 

 

 440 Hz. Recording
was made in a ‘dry’ acoustic room (though not an anechoic cham-
ber) with a Rode NT1A microphone (20 Hz–20 kHz) , using an Akai
EIE Pro interface 

 

 

 

 

 

 

 

 and Logic Pro X 

 

 

 

 

 

 

 

 software, at 24 bit 44.1 kHz. 

 

 

 

 

 

 

 

 The
resulting WAV files were segmented into sections for each note,
each at least 4 

 

 

 

 

 

 

 

 s long after 

 

 

 

 

 

 

 

 truncating the transients at the begin-
nings and ends of the note 

 

 

 

 

 

 

 

 to leave a steady tone portion. The fre-
quency was determined in MatLab TM using the YIN algorithm .[83]
The accuracy of this method is estimated by its authors to be
approximately ±1 cent, which is much better than 

 

 

 

 

 

 

 

 can be obtained
by 

 

 

 

 

 

 

 

 digital Fourier transform methods.

5. Results

5.1. Comparison of calculations and acoustic measurements

The tone-hole cutoff frequency 

 

 

 

 

 

 

 

 for this instrument is about
1000 Hz, calculated from Benade’s formula for an open tone-[10]
hole lattice

f c ¼ 0 11: c
b

a

 

1
sl

 1 2=

ð Þ2

where f c is the cutoff frequency, the speed of sound, the pipec a

radius, the hole radius, the hole spacing 

 

 

 

 

 

 

 

 and the acoustic lengthb s l

of the holes. Clearly this is an approximation, since the hole spac-
ings and diameters do vary somewhat, but it is confirmed by visual
inspection of the impedance spectra. It is 

 

 

 

 

 

 

 

 worth noting this value,
since for bass clarinets, and also by scaling from soprano clarinets,
one would normally expect a 

 

 

 

 

 

 

 

 cutoff around 750 Hz . This[ , ]10 73
could be a significant parameter to evaluate in the study of histor-
ical instruments, 

 

 

 

 

 

 

 

 since it definitely affects the musical sound and
playing qualities, as discussed by Benade , who notes that[10]
woodwind instruments have actually ‘evolved’ over the centuries
so that their cutoff frequencies became approximately constant
over the 

 

 

 

 

 

 

 

 whole 

 

 

 

 

 

 

 

 range of the instrument. Waves with 

 

 

 

 

 

 

 

 frequencies
beyond the cutoff limit are not reflected at the first open tone hole
but transmit through to and out of the bell (which is designed to
have a similar cutoff frequency). They thus do not contribute to

the standing waves in the instrument nor to the feedback that sta-
bilises the oscillations of the reed, though they can contribute
(weakly) to the sound spectrum. We thus chose the frequency range
20–2000 Hz, with 0.5 Hz steps, for both the measurements and cal-
culations. The range on the instrument for analysis was chosen to
be from written E2 to D5 (69.3–494 Hz fundamental frequencies),
corresponding to C#2 to B4 concert pitches. Whilst information
could be obtained from higher note fingerings. It is less significant;
only one resonance frequency contributes to defining the pitch pro-
duced for notes above about G4, and this pitch can be varied widely
by embouchure control in the altissimo regime. In this regime the
pitch of the sound produced is more 

 

 

 

 

 

 

 

 reliant 

 

 

 

 

 

 

 

 on the skill of the player
than on the instrument.

To 

 

 

 

 

 

 

 

 give an overall impression we first show a sequence 

 

 

 

 

 

 

 

 of notes
from (written) C major arpeggios, from E2 up to C5, with experi-
mental and calculated impedances superimposed ( ). NoFig. 2
embouchure correction was made for these data. The experimental
absolute values of the 

 

 

 

 

 

 

 

 impedance peak amplitudes agree well in
frequency with the calculated values but are up to a factor of 2
lower in amplitude. This is consistent with the results of Plitnik
and 

 

 

 

 

 

 

 

 Strong , and may indicate that some losses in the tube,[28]
such as fingers, pads, turbulence at edges, or wall porosity are
not taken into account in the model. However there may be exper-
imental reasons for 

 

 

 

 

 

 

 

 the discrepancy, such as the smoothing algo-
rithm used by BIAS, or the short measurement interval possibly
being insufficient 

 

 

 

 

 

 

 

 to excite 

 

 

 

 

 

 

 

 high-Q resonances completely. We have
not investigated this discrepancy further, since our primary inter-
est is in the frequencies 

 

 

 

 

 

 

 

 of the peaks.
The agreement between experiment and 

 

 

 

 

 

 

 

 calculation 

 

 

 

 

 

 

 

 can be
tested in detail. a shows the departures from equal tempera-Fig. 3
ment for the calculated and measured impedance values and for
the frequencies determined from the playing tests. To magnify
and 

 

 

 

 

 

 

 

 quantify the intonation variations we express them in cents,
where the difference in cents between two frequencies f 1 and f 2

is 1200log 2(f 2 /f1). This gives a deviation from a target pitch by an
amount that is comparable over the whole range. As expected from
the arguments above, the playing 

 

 

 

 

 

 

 

 frequencies are slightly below
the impedance peak values. It is 

 

 

 

 

 

 

 

 also apparent that the instrument
is playing somewhat sharp overall 

 

 

 

 

 

 

 

 (relative to equal temperament
at A4 = 440 Hz) and becomes 

 

 

 

 

 

 

 

 sharper at higher notes. On discover-
ing this, we repeated the calculations and playing tests for the
instrument pulled out 10.8 mm 

 

 

 

 

 

 

 

 at the mouthpiece (see b).Fig. 3
As expected, this gives a useful correction to 

 

 

 

 

 

 

 

 the intonation, and
playing experience indicates that this is just acceptable for playing
at A4 = 440 Hz, given the variation that is available by embouchure
control especially in the upper notes.

There is scatter in a, but we see that the calculated peaksFig. 3
are close to the measured peaks but systematically a little higher in
frequency. We also 

 

 

 

 

 

 

 

 see that the playing frequencies are lower still
(as expected from acoustic theory) but appear to follow the
measured or calculated deviations. Again, these can be further
quantified. a shows the differences between 

 

 

 

 

 

 

 

 calculated andFig. 4
measured impedance peaks, with the calculated peaks being a little
higher in frequency. The difference averages at 10 ± 8 cents
(±3 the standard deviation of the mean), which can be corrected

quite well with a 3 mm calibration correction added to the mouth-
piece length (see below). It is possible that at least some of this

Fig. 1. The Heckel bass clarinet in A 

 

 

 

 

 

 

 

 used for the trials. (picture courtesy Huw 

 

 

 

 

 

 

 

 Bowen).
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difference can be ascribed to interactions between tone holes, which
are expected to lower the resonance frequencies by a few cents [71].
Meanwhile, b shows the difference between the measuredFig. 4
impedance peaks and the 

 

 

 

 

 

 

 

 playing frequencies. These average at
37 ± 8 cents and correspond to the effects of the reed impedance.

Since 

 

 

 

 

 

 

 

 the impedance peak differences between calculation and
experiment are small and reasonably consistent, they appear to
be systematic and might be reduced by further development of
the computation, for example to 

 

 

 

 

 

 

 

 take account of losses other than
the viscous and heat losses inherent from a smooth-walled tube.

Fig. 2. Ten comparisons of experimental and computed results, in a (written) C major arpeggio from low written E2 up to C5 plus D5. Measured data are shown in black lines,
calculated impedances in red lines. The measured and calculated lines largely overlap for each note, but the measured 

 

 

 

 

 

 

 

 amplitudes are significantly lower and the 

 

 

 

 

 

 

 

 frequencies
very slightly lower. Note that for C4 to C5 the second impedance peak becomes the basis of the sound, through use of 

 

 

 

 

 

 

 

 the speaker key, which depresses and shifts the first
resonance out of a harmonic relationship with subsequent resonances. For D5, the sound becomes based upon the third resonance peak. The cutoff frequency is 1000 Hz in

this instrument; frequencies above this value are not expected to participate in the standing wave formation and in the feedback to the reed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Viscothermal losses due to porosity are the obvious candidates and
indeed the Heckel instrument has a dry appearance and may need
oiling. We note that much information on sound absorption of por-
ous materials is available 

 

 

 

 

 

 

 

 from the extensive literature on acoustic
damping in architecture. However, an agreement within about 10
cents, which may be corrected empirically by an equivalent length
of 3 mm on the mouthpiece segment, is sufficiently accurate for
the research into historical instruments.

The difference of approximately 37 cents between the mea-
sured (or corrected calculated) peaks and the playing frequencies
is ascribed to the embouchure correction discussed above. The
results appear similar to those of Dalmont et al. 

 

 

 

 

 

 

 

 though 

 

 

 

 

 

 

 

 there[59]
is more scatter, possibly because the 

 

 

 

 

 

 

 

 latter used a blowing machine
not a player. From the scaling expected, an embouchure equivalent
length of about 15 ± 4 mm should be added to the top of the
mouthpiece impedance. We therefore recalculated the impedances
with 

 

 

 

 

 

 

 

 a number of embouchure equivalent lengths added to the top
of the column, just before the terminating impedance. There 

 

 

 

 

 

 

 

 was
substantial scatter but our estimate is 

 

 

 

 

 

 

 

 that the equivalent length
added onto the mouthpiece segment (at its same diameter) should
be 17 ± 4 mm, plus 3 mm to correct the 10 cent difference

between our computed and measured 

 

 

 

 

 

 

 

 impedance curves. The
graph for 20 mm total added length is shown in for bothFig. 5
‘‘mouthpiece pushed in” and ‘‘mouthpiece pulled out 10.8 mm”.
This shows that the embouchure and calibration correction works
equally well for these two conditions. The assumption of frequency
independence seems reasonable within our limited accuracy; there
is some downwards trend in each register (which changes at about
200 and 450 Hz) but 

 

 

 

 

 

 

 

 there is little overall frequency dependence.
The value of + 17 mm for the embouchure correction is consistent
with 

 

 

 

 

 

 

 

 the soprano clarinet values of Dalmont et al., using our
approximate scaling argument. They would vary somewhat with
a different player and mouthpiece/reed, but the usefulness 

 

 

 

 

 

 

 

 of this
number is that, where the mouthpiece of an historical instrument
is missing, we can make estimates of its 

 

 

 

 

 

 

 

 effect based on the mouth-
piece used 

 

 

 

 

 

 

 

 in this 

 

 

 

 

 

 

 

 investigation.

Note that a maker would not necessarily 

 

 

 

 

 

 

 

 build the instrument
so that 

 

 

 

 

 

 

 

 the average deviation from playing pitch was zero, since
notes that are flat are much harder for the player to correct than
those that are sharp. Also, 

 

 

 

 

 

 

 

 the player needs to be able to play in
tune when the instrument is cold, especially for a doubling instru-
ment such 

 

 

 

 

 

 

 

 as a bass clarinet in A. A better choice is an instrument
that is slightly sharp on average with no notes that are too 

 

 

 

 

 

 

 

 flat to be
easily corrected. The graphs above show that 

 

 

 

 

 

 

 

 this is indeed the case
for the Heckel instrument. Moreover, the consistent tendency for
the intonation errors to rise fairly smoothly from the bottom to
the top of each register makes it easier for the player to learn what
adjustment is needed on each note.

5.2. Investigation of alternative fingerings

An important application of modelling in the understanding of
historical instruments is comparative. For 

 

 

 

 

 

 

 

 example, it is often of
interest to study the intonation and stability of alternative
fingerings (e.g. Cronin’s work on bassoons ). We tested this[55]
by calculating and playing several notes that may have alternative
fingerings: written Bb2, E b3, F3, C#4 and C5. These are referred to
as ‘normal’ or ‘fork’ and are shown in . Only the calculatedTable 1
results are shown, again using a 17 mm embouchure correction
and 

 

 

 

 

 

 

 

 a 3 mm calibration correction.
The calculated impedance spectra for the notes are shown in

Figs. 6–10. In each case the ‘‘normal” fingering is shown in black
and 

 

 

 

 

 

 

 

 the alternative in red. 

 

 

 

 

 

 

 

 In all except , the 

 

 

 

 

 

 

 

 first resonanceFig. 10
and 

 

 

 

 

 

 

 

 at least one other resonance aligns well between the two
fingerings, and these also align with the fundamental and third
harmonic of the intended played note (the 

 

 

 

 

 

 

 

 harmonic positions
are not shown on the figures). For some notes, the resonances align
well with the 5th and 7th harmonics also. The observation on play-
ing was that a two-resonance match 

 

 

 

 

 

 

 

 was sufficient to produce a
good match in intonation for the two fingerings, but that the more
resonances that were aligned, the better was the match in timbre
between the alternative fingerings.

Fig. 3. Deviation in cents for each note, left: mouthpiece pushed in, right: mouthpiece pulled out 10.8 mm. The horizontal line at y = 0 represents equal temperament at
A4 = 440 Hz. We did not make measurements of the ‘‘pulled-out” impedances. The 

 

 

 

 

 

 

 

 ‘break’ in the instrument ranges between written 

 

 

 

 

 

 

 

 Bb3 and B3 occurs at about 200 Hz and
that between C5 

 

 

 

 

 

 

 

 and C#5 at about 450 Hz. Up to the first break the first resonance frequency is plotted, between the first and second break the second resonance and above
the third break, the third resonance peak. Each data point corresponds to a single note. The equal temperament frequencies are calculated at A4 = 400 Hz.
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Fig. 4. (a): differences between calculated and measured impedance peaks. (b): differences between measured impedance peaks and measured playing frequencies. In both
cases the mouthpiece was fully pushed in, and in case (b) was played at levels. No embouchure or calibration correction was applied to the calculated results in (a). Themf

y = 0 line corresponds to zero difference.

Fig. 5. Comparison between calculated impedance peaks and measured playing frequencies when the overall embouchure end correction was 20 mm. (a) with mouthpiece
pushed in, (b) with mouthpiece pulled out.

Table 1

Alternative fingerings investigated. The fingering diagrams were constructed 

 

 

 

 

 

 

 

 using
the Brett Pimenthal Fingering 

 

 

 

 

 

 

 

 Builder .[84]

Note Normal Fork

Bb2

Eb3

F3

C#4

C5
Fig. 6. . Calculated impedance spectra for two fingerings for the note Bb2. The first
three resonances overlap 

 

 

 

 

 

 

 

 almost exactly for the two fingerings.
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However, the forked D#/Eb3 shown in showed a 

 

 

 

 

 

 

 

 poorFig. 10
match between the two fingerings, and as predicted from the
impedance curves, the fork fingering played almost a semitone
sharp. Whilst the 

 

 

 

 

 

 

 

 fork fingering is often acceptable for this note
on earlier German system clarinets (sometimes it is 

 

 

 

 

 

 

 

 the only fin-
gering for this note) it is clearly not the case here (and is generally
not the case for Albert system 

 

 

 

 

 

 

 

 clarinets).

5.3. Impedance maps and the cutoff frequency

Jeltsch et al. 

 

 

 

 

 

 

 

 introduced 

 

 

 

 

 

 

 

 the concept of impedance maps[50]
that show the resonances of all of the fingerings of the clarinet
on one diagram and went on to apply it to experimental impedance

measurements. They do not give 

 

 

 

 

 

 

 

 the method of calculation, but we
have developed a similar procedure and applied it to both experi-
mental and 

 

 

 

 

 

 

 

 calculated impedances. The latter is shown in Fig. 11
for 3 mm 

 

 

 

 

 

 

 

 embouchure correction, which should enable direct com-
parison with experiment.

The method of plotting is as follows. After calculating the impe-
dance spectra for 

 

 

 

 

 

 

 

 all fingerings of the instrument, the impedance
data (as shown in e.g. ) are analysed to determine all theFig. 2
peaks 

 

 

 

 

 

 

 

 (resonances) in the spectra. It was sufficient to find the first
seven 

 

 

 

 

 

 

 

 peaks only in each impedance spectrum. For each note fin-
gering and its corresponding set of resonances, the resonant fre-
quencies are plotted with coordinates determined as:

 Ordinates: the nominal equal 

 

 

 

 

 

 

 

 temperament frequency of the
note, using (in this case) A4 = 440 Hz.

 Abscissae: the ratio of the actual frequency of the resonance to
the nominal equal temperament frequency.

 The scales are logarithmic on both axes.
 Markers are placed at odd multiples of 1 on the horizontal axis.
 The cutoff frequency, 

 

 

 

 

 

 

 

 1000 Hz in this case, 

 

 

 

 

 

 

 

 is also plotted in the
same way (thus at an ordinate of 500 Hz its abscissa will be 2,
while at an ordinate of 250 Hz its abscissa will be 4). It will
be a straight line in this plot.

 In our case, peaks up to 2000 Hz are included in the plot.

The meaning of this map is that, for an equal-temperament clar-
inet, perfectly 

 

 

 

 

 

 

 

 tuned at A4 = 440 

 

 

 

 

 

 

 

 Hz, we should see the points rep-
resenting all the cooperating resonances 

 

 

 

 

 

 

 

 for a given fingering lying
along a set of vertical 

 

 

 

 

 

 

 

 lines near the odd integers on the horizontal
scale, up to the cutoff 

 

 

 

 

 

 

 

 frequency. They should be displaced slightly
to the right because of the necessary embouchure correction due to
reed impedance, discussed earlier, but they should compare closely
with the experimental measured impedances. The latter are shown
in . The experimental map is constructed similarly, exceptFig. 12
that because of a small amount of noise in the experimental data,
giving 

 

 

 

 

 

 

 

 spurious peaks, each impedance 

 

 

 

 

 

 

 

 spectrum is first processed
to order the peaks by their ‘prominence’ 2 and then the first seven
most prominent peaks are selected. This largely eliminates the spu-
rious peaks. The register shifts on this instrument occur at approxi-
mately 200 and 450 Hz, and the change of resonance peak on which
the note pitch is based is clearly seen.

To 

 

 

 

 

 

 

 

 predict 

 

 

 

 

 

 

 

 the 

 

 

 

 

 

 

 

 actual playing pitches, the additional embou-
chure correction 

 

 

 

 

 

 

 

 of 17 mm to allow 

 

 

 

 

 

 

 

 for the reed impedance must
be applied, as discussed in . The result is shown inSection 5.1
Fig. 13. The 

 

 

 

 

 

 

 

 resonances are now seen to be (mostly) very well
aligned with the harmonic numbers. Thus, when the non-linear
reed generator is combined with these impedance characteristics,
a cooperative regime of oscillation will be set up , with each[73]
harmonically-related resonance frequency contributing to the sta-
bilisation of the oscillation, up to the cutoff frequency. 

 

 

 

 

 

 

 

 It can be
seen that the first seven resonance frequencies are involved at
the bottom of the instrument’s range, 

 

 

 

 

 

 

 

 but 

 

 

 

 

 

 

 

 only one resonance fre-
quency (the second or third) contributes near the top of the range.
A slight sharpness is indicated as was actually found in the playing
tests.

If we follow any particular resonance vertically, we 

 

 

 

 

 

 

 

 see discon-
tinuities 

 

 

 

 

 

 

 

 occurring at 200 

 

 

 

 

 

 

 

 and 450 Hz, the 

 

 

 

 

 

 

 

 register change points.
At 

 

 

 

 

 

 

 

 each discontinuity, a higher resonance takes over the role of
determining the playing pitch; for example the first resonance is
replaced by the second at abscissa 1 at ordinate 200 (written B3).
It can also be seen that, as one moves up through the 

 

 

 

 

 

 

 

 registers of
the instrument, for each note fingering there are still resonances

Fig. 7. Calculated impedance spectra for two fingerings for the note F3. The first
two resonances overlap almost exactly.

Fig. 8. Calculated impedance spectra for two 

 

 

 

 

 

 

 

 fingerings for the note C#4. The
‘‘patent C#” fingering will be slightly sharp. Note that in the second register, the
speaker key lowers and shifts the first resonance to a higher frequency, so the note
produced becomes based on the second resonance frequency.

Fig. 9. Calculated impedance spectra for two fingerings for the note C5. The first
two resonances overlap almost exactly. Again, it is the second resonance that aligns
with the fundamental of the note played.

2 The amount that the peak stands out due to its intrinsic height and its location
relative to 

 

 

 

 

 

 

 

 other peaks as defined in the MatLab TM function findpeaks(array).
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which fall in the 1:3:5 etc. harmonic ratio, 

 

 

 

 

 

 

 

 and thereby support
harmonics of the played note.

Impedance maps also give a new insight into the nature of the
cutoff frequency itself. If we look, for example, at the fourth
resonance peak (denoted by green diamonds), we see that it runs
vertically up to the point at which it intersects the line 

 

 

 

 

 

 

 

 drawn at
1000 Hz, the approximate cutoff frequency from Benade’s formula
(Eq. ). Then the line turns sharply left to run parallel to the line(2)
tracing the cutoff frequency. Hence, although the resonance still
exists, it ceases to be in a harmonic relationship with the first
resonance peak for subsequent notes. At 200 Hz, the register key
is applied and we see the discontinuity where the fourth peak
moves 

 

 

 

 

 

 

 

 to a lower frequency. This is now below cutoff, and the peak
moves 

 

 

 

 

 

 

 

 again along a vertical line. This does not correspond to any
harmonic of the played note. However, if we instead follow the
fifth resonance peak (denoted by black crosses), it can be seen that
it initially supports the ninth harmonic of the 

 

 

 

 

 

 

 

 played note. It then
hits the cutoff and for the next 

 

 

 

 

 

 

 

 few note pitches does not partici-
pate in the regime of oscillation. However, it then starts to support

the third harmonic at 200 Hz (B3). This view of the cutoff 

 

 

 

 

 

 

 

 beha-
viour explains in a systematic way why higher notes may combine
apparently random mixtures of resonance peaks in their regimes of
oscillation. If we look at the line representing the third harmonic 

 

 

 

 

 

 

 

 in
the impedance maps, we see that as one moves through the notes
towards the top of the 

 

 

 

 

 

 

 

 instrument’s range, the fifth, sixth and sev-
enth resonances 

 

 

 

 

 

 

 

 all successively play a role 

 

 

 

 

 

 

 

 in 

 

 

 

 

 

 

 

 supporting the third
harmonic.

The locus of the resonance peaks, as they start to deviate
from a harmonic relationship 

 

 

 

 

 

 

 

 with the lower resonances, follows
closely the slope of the cutoff 

 

 

 

 

 

 

 

 frequency line. 

 

 

 

 

 

 

 

 We can therefore
identify, if not a precise cutoff frequency, then certainly a cutoff
band. The impedance map (corrected for embouchure impe-
dance) is thus seen to contain a great deal of information about
the instrument: its tuning, its harmonicity, its likely mixture of
partials and the degree with which they are aligned with the
resonances of the instrument. We can in essence regard 

 

 

 

 

 

 

 

 the
impedance map as a ‘‘fingerprint” that characterises the
acoustics of the instrument.

Fig. 11. Impedance map of calculated impedances, using an embouchure 

 

 

 

 

 

 

 

 correction of 3 mm, which should enable good comparison with measured impedances. See main
text for explanation of method of plotting.

Fig. 10. Calculated impedance spectra for two fingerings for the note Eb3, at two frequency scales. The 

 

 

 

 

 

 

 

 resonances indicate that the ‘‘alternative” fingering will 

 

 

 

 

 

 

 

 be almost a
semitone sharp.
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The cutoff band is 

 

 

 

 

 

 

 

 seen more clearly in a simple linear plot of
the individual resonance frequencies 

 

 

 

 

 

 

 

 against the nominal ET fre-
quencies of their fingerings, which we call a cutoff diagram,
Fig. 

 

 

 

 

 

 

 

 14. There is no single cutoff for the whole instrument, but each
resonance individually cuts off somewhere in 

 

 

 

 

 

 

 

 the band 920–

1320 Hz. Many of them cluster around 1000 Hz, indicating 

 

 

 

 

 

 

 

 that
the Benade approximation (Eq. ) is reasonable and useful,(2)
though not exact. Each resonance frequency increases continu-
ously and then saturates, except at the register changes. At register
changes, all resonances drop abruptly in frequency due to the

Fig. 13. Impedance map of calculated impedances, using an embouchure correction of 20 mm. This should indicate the actual audio frequencies on playing.

Fig. 12. Impedance map of experimental impedances, to compare with . Impedance map of calculated impedances, using an embouchure correction of 3 mm, whichFig. 11
should enable good comparison with measured impedances. See main text for explanation of method of plotting.
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effect of the 

 

 

 

 

 

 

 

 speaker key and (for the third register) first fingerhole
opening. The cutoff is of course not abrupt, but a roll-off, and it is
seen to depend on the fingering. The onset of cutoff for each reso-
nance will be at a different fingering. It will depend on the spacing,
diameters and chimney lengths of the 

 

 

 

 

 

 

 

 holes. This is consistent with
the observations of Moers and Kergomard .[85]

We have not displayed the information contained in the peak
heights, since the plot becomes complicated and adds little insight.
We simply note that the peak heights near cutoff become quite
small, as can be seen in , and also that the height of the firstFig. 2
resonance peak (abscissa 1 on the impedance maps) drops by
about 50% on changing from the first to the second register (‘cross-
ing the break’).

6. Conclusions and future work

The 

 

 

 

 

 

 

 

 computational model 

 

 

 

 

 

 

 

 used in this 

 

 

 

 

 

 

 

 study is 

 

 

 

 

 

 

 

 based on small-
signal, linear, plane- and spherical-wave acoustics with viscous
and thermal losses at smooth 

 

 

 

 

 

 

 

 walls. It does not take account of
some loss mechanisms such as wall porosity, internal tone-hole
edge turbulence and finger and pad resilience. Nevertheless, it is
remarkably accurate for predicting the absolute values of reso-
nance frequencies and 

 

 

 

 

 

 

 

 the relative heights of resonance peaks.
We conclude that the method is certainly accurate enough for
the purpose of reconstructing the acoustic impedance (resonance)
spectra 

 

 

 

 

 

 

 

 of instruments of this type. This extends the similar conclu-
sion of Dalmont et al. from soprano clarinets, oboes and alto[59]
saxophones to bass clarinets, and provides a reasonably accurate
measurement of the embouchure equivalent length in the instru-
ment 

 

 

 

 

 

 

 

 studied.
It 

 

 

 

 

 

 

 

 may eventually be possible to reconstruct the entire sound,
using methods pioneered by Taillard and his associates , which[86]
requires also the more detailed non-linear treatment of the reed/
mouthpiece generator, but the preliminary step for that process
is the 

 

 

 

 

 

 

 

 measurement or calculation of input impedances to suffi-
cient accuracy. We believe that we achieve tuning accuracy (after

corrections applied) at worst within a few cents, which is entirely
adequate to measure the pitch and temperament at which an
instrument was designed to play. The relative accuracy within or
between instruments would be much better, so there is no prob-
lem in comparing alternative fingerings for notes, for determining
the pitch and temperament in which the instrument was
constructed or for comparing the overall acoustic behaviour of
two 

 

 

 

 

 

 

 

 different instruments. In this project, one of the authors
(DKB) has a particular interest in comparing bassoon-form and
straight-form bass clarinets of the early nineteenth century, and
the method appears to be very suitable.

As pointed out by many others the 

 

 

 

 

 

 

 

 pre-[ , , , , , , ]10 30 34 53 55 57 59
diction of resonance peaks has utility in instrument design,
restoration and modification. The effect of drilling or moving a
hole, or of reaming the bore (for example, for removing the tenon
compression induced by tenon lapping before cork came into use
[87]) can be checked before material is removed. The Heckel under
study in fact has a centre tenon that has 

 

 

 

 

 

 

 

 a 0.1 mm restriction for a
few centimetres, but calculation of its effect on the impedances
showed that it had a quite negligible influence and so did not need
any 

 

 

 

 

 

 

 

 reaming. Playing problems with a particular instrument may
also be diagnosed. Again, it is clear that the Heckel instrument
would play more in tune with a slightly longer neck, or at a higher
orchestra pitch. Examination of the 

 

 

 

 

 

 

 

 neck does indicate that it might
be a later 

 

 

 

 

 

 

 

 replacement 

 

 

 

 

 

 

 

 and not an original. The calculated impe-
dances could also indicate how to alter a tone hole to improve
the tuning, and what effect this would have on other notes. We
believe, therefore, that we have quantitatively validated the com-
putational method of acoustic impedance modelling as a research
tool for investigating and restoring both modern and historical
bass clarinets.
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